
www.manaraa.com1Scientific REPORtS |  (2018) 8:2696  | DOI:10.1038/s41598-018-20348-7

www.nature.com/scientificreports

A Mathematical Model for Enzyme 
Clustering in Glucose Metabolism
Miji Jeon1, Hye-Won Kang2 & Songon An  1

We have recently demonstrated that the rate-limiting enzymes in human glucose metabolism organize 
into cytoplasmic clusters to form a multienzyme complex, the glucosome, in at least three different 
sizes. Quantitative high-content imaging data support a hypothesis that the glucosome clusters 
regulate the direction of glucose flux between energy metabolism and building block biosynthesis 
in a cluster size-dependent manner. However, direct measurement of their functional contributions 
to cellular metabolism at subcellular levels has remained challenging. In this work, we develop a 
mathematical model using a system of ordinary differential equations, in which the association of 
the rate-limiting enzymes into multienzyme complexes is included as an essential element. We then 
demonstrate that our mathematical model provides a quantitative principle to simulate glucose flux 
at both subcellular and population levels in human cancer cells. Lastly, we use the model to simulate 
2-deoxyglucose-mediated alteration of glucose flux in a population level based on subcellular high-
content imaging data. Collectively, we introduce a new mathematical model for human glucose 
metabolism, which promotes our understanding of functional roles of differently sized multienzyme 
complexes in both single-cell and population levels.

Glucose metabolism consists of glycolysis and gluconeogenesis. Glycolysis converts glucose into pyruvate, 
whereas gluconeogenesis reverses the sequential reactions to produce glucose1. In normal healthy cells, glucose 
is converted into pyruvate. Pyruvate then shuttles to mitochondria for oxidative phosphorylation in the presence 
of oxygen. If the oxygen is limited, however, pyruvate becomes lactate. In addition to its association with energy 
metabolism, glucose also plays an important role in building block biosynthesis, including the pentose phosphate 
pathway and serine biosynthesis. This is particularly important in cancer cells because glucose metabolism is 
dysregulated in proliferating cancer cells in which glucose diverts into building block biosynthesis even in the 
presence of oxygen. Hence, understanding the mechanism of glucose flux regulation between energy metabolism 
and building block biosynthesis is important to address altered metabolic phenotypes in human cancer as well as 
other chronic diseases, including but not limited to diabetes and obesity2.

Meanwhile, multienzyme metabolic complexes catalyzing glycolysis have been identified in various organ-
isms, including protists, plants, yeast, mammalian neurons and erythrocytes, and human cancer cells3. Recently, it 
has been shown that human liver-type phosphofructokinase 1 (PFKL) forms cytoplasmic clusters in human can-
cer cells and further colocalizes with other cytoplasmic rate-limiting enzymes of the pathway, including human 
liver-type fructose-1,6-bisphosphatase (FBPase), pyruvate kinase M2 (PKM2), and phosphoenolpyruvate car-
boxykinase 1 (PEPCK1), thus indicating the formation of a multienzyme complex, namely the glucosome4. The 
size of glucosome clusters becomes larger in human breast carcinoma cells (Hs578T), relative to non-cancerous 
human breast tissue cells (Hs578Bst), demonstrating the spatial alteration of glucose metabolism in cancer cells4. 
Similarly, tumor-promoting hypoxic conditions also increased the size of glucosome clusters in human hepatocel-
lular carcinoma cells (HepG2)5. Importantly, our quantitative high-content imaging data4 supported a hypothesis 
that the glucosome clusters regulate the direction of glucose flux between energy metabolism and building block 
biosynthesis in a cluster size-dependent manner. Unfortunately, however, it has been challenging to prove the 
hypothesis experimentally by measuring metabolic activities of various sized glucosome clusters at subcellular 
levels.

In parallel, several mathematical models for glycolysis have been developed using ordinary differential equa-
tions (ODEs) for various model organisms: e.g., bacteria, yeast, virus and human (erythrocytes and liver cells)6–11. 
Along with incorporating in vitro kinetic parameters of the enzymes in glycolysis, some ODE-mediated models 
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describe the importance of bistable behavior in glycolysis with strong emphasis on the known allosteric regu-
lation of the rate-limiting enzymes12. Particularly, recent mathematical models for human liver or cancer cells 
cover a complicated network beyond glycolysis by including the pentose phosphate pathway, serine biosynthesis, 
glutamine metabolism, and/or mitochondrial metabolism13,14. However, mathematical models for glucose metab-
olism have barely explained yet how a multienzyme complex influences glucose flux in cancer cells in a cluster 
size-dependent manner.

In this work, we have constructed a mathematical model to understand how the formation of a multienzyme 
complex in glucose metabolism affects glucose flux in cancer cells. Since the glucosome is composed of at least 
four cytoplasmic rate-limiting enzymes of glucose metabolism4, we have formulated a model to accommodate 
all the members of the glucosome. Our model indeed reveals the impact of their spatial complexation in silico on 
temporal changes of glycolytic metabolites at a subcellular level in single cells. We further show that our model is 
capable of predicting metabolic outcomes of a population of cells based on the relative distribution of glucosome 
clusters in the population. In conclusion, our mathematical model includes not only enzyme kinetics and their 
allosteric regulation but also spatial compartmentalization of the rate-limiting enzymes of the pathway, thus 
allowing us to understand the metabolic contributions of glucose flux at both single-cell and population levels.

Model and Methods
A Mathematical Model. We develop a model to investigate how the size of glucosome clusters affects the 
direction of glucose flux in cancer environment as an indication of the metabolic activity of glucosome clusters in 
various sizes. Our model involves 7 metabolic intermediates (Si), 9 enzyme-associated species (Ei) with various 
forms by which enzyme activities of the rate limiting steps are regulated, 3 metabolic products (Pi), and 28 reac-
tions (Fig. 1 and Tables 1 and 2). Among the fourteen enzymes participating in glycolysis and/or gluconeogenesis, 
we only focus on the enzyme activities of the glucosome members (i.e., PFKL, FBPase, PKM2, and PEPCK1), 
which are hypothesized to have different activity levels in a cluster size-dependent manner. In Fig. 1, we present 
our simplified metabolic pathway with the enzymes involved in the glucosome. All chemical species and reaction 
rate constants in our pathway are introduced in Tables 1 and 2. An ordinary differential equations (ODE) model 
was used to describe temporal dynamics of the metabolic network involving enzymatic reactions associated with 
glucose metabolism. Temporal concentration changes in each metabolic intermediate are determined by pro-
pensity functions of the reactions where the intermediate is produced or consumed. Table 3 summarizes the 
propensity function Ri for the ith reaction. In Table 3, most of the reactions are modeled by the law of mass action, 
in which the reaction rate is proportional to the substrate concentrations. The allosteric regulations of meta-
bolic enzymes by metabolites are modeled as Michaelis-Menten kinetics, and their propensity functions include 
rational functions of the substrate concentrations to describe allosteric effects of the corresponding enzymes. 
Table 4 summarizes a set of all ODEs used in our model.

We also provide reaction rate constants and initial values for the intermediate concentrations used in our 
model (Tables 1 and 2). We determined the parameters in Tables 1 and 2 using the numerical simulation of the 
model to be consistent with the qualitative changes in glucose flux in the literature15. As shown in Table 1, we 
assumed that initial concentrations of metabolic intermediates (Si), products (Pi), PKM2 tetramers (E3*) and 
glycosylated PFKL (E1

gly) are at the basal levels and set them as 0.01. We also assumed that no multienzyme com-
plex (ES/M/L) is formed at the beginning of simulation. An enzyme concentration of each glucosome member is 
assumed to be conserved, setting as 100. Assuming that all reaction rate constants for the enzymes are in the same 
order of magnitude, the reaction rate constants of metabolic enzymes are set to 10 as shown in Table 2. However, 
we slightly modified the values for k2, k−2, k4, and k−4 so that glycolysis becomes dominant relative to the meta-
bolic shunt to the pentose phosphate pathway and/or serine biosynthesis in the absence of enzyme clusters (i.e., 
P3 ≫ P1, P2). Lastly, we assumed that all the metabolic products are produced (kp/s/f) and degraded (δp/s/f) in the 
same rates, thus setting them to 5 and 0.5, respectively. Note that we provided both forward and backward reac-
tion rate constants in Table 2, which are separated by comma.

Next, different levels of the enzyme activity depending on the size of glucosome clusters are expressed in 
terms of the parameters ci (for medium-sized enzyme clusters) and ei (for large-sized enzyme clusters) in Table 2. 
Based on our hypothesis that the medium-sized enzyme clusters promote glucose shunt to the pentose phosphate 
pathway4, we decelerated glycolysis (c2, c−d ≪ 1) and accelerated gluconeogenesis (c−2, c−6 ≫ 1). Similarly, based 
on our hypothesis that the large-sized enzyme clusters will shunt glucose flux to serine biosynthesis4, we changed 
parameters to direct glucose flux toward serine production (e2, e−6 ≫ 1 , and e−2, e−d ≪ 1). An enzyme activity 
in the small-sized clusters is assumed similar to the activity of a freestanding enzyme because the small-sized 
clusters formed by PFKL do not represent a multienzyme complex4. Using the initial values and the reaction rate 
constants shown in Tables 1 and 2, our mathematical model was simulated using MATLAB to compute temporal 
changes of glucose flux in different scenarios at the subcellular level. Note that our MATLAB simulation codes are 
provided in the supplementary document.

Importantly, we have also performed sensitivity analysis of the parameters to investigate how the concentra-
tions of three metabolic products (Pi) are affected by small changes in each parameter that we have incorporated 
in our model. In the sensitivity analysis, we have used the method of partial rank correlation coefficient (PRCC)16 
to evaluate the level of the linear association between the input values of the parameters and the output con-
centrations of the metabolic products. To perform the sensitivity analysis, we modified the publically available 
MATLAB codes which are developed by Kirschner and coworker16. The default parameter values were set as the 
values used in our model, and we defined an interval for each parameter from half of the default value to twice of 
the default value. Then, we used Latin hypercube sampling16 to choose each parameter value in the corresponding 
interval by assuming that each parameter is uniformly distributed in the interval. Afterward, the sampled param-
eter values were used to calculate the concentrations of the metabolic products at the end time of the simulation. 
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We repeated the sampling process described above 20,000 times and calculated the Spearman correlation coeffi-
cients, which correspond to PRCCs.

Experimental Methods. Materials. The plasmid expressing human PFKL with a monomeric form of 
enhanced green fluorescent protein (mEGFP) was prepared previously (PFKL-mEGFP)4. We have employed 
PFKL-mEGFP as a marker of the glucosome. 2-Deoxyglucose was purchased from Sigma.

Cell Culture. Human breast carcinoma cells, Hs578T (HTB-126), were obtained from the American Type 
Culture Collection (ATCC). Hs578T cells were maintained in the Roswell Park Memorial Institute 1640 medium 
(RPMI1640, Mediatech, Cat# 10-040-CV) supplemented with 10% dialyzed fetal bovine serum (dFBS, Atlanta 
Biological, Cat# S12850) and 50 µg/mL gentamycin sulfate.

Transfection. To prepare cells for transfection and subsequent imaging, Hs578T cells were gently removed 
from the culture flask by replacing the culture medium with Trypsin-EDTA solution (Corning, Cat# 25-053-Cl). 
Fresh, antibiotic-free growth media was subsequently used to harvest and resuspend the cells, followed by plating 
on glass-bottomed 35 mm Petri dishes (MatTek). When the confluency became ~70–90% on the following day, 
the cells were transfected with Lipofectamine 2000 (Invitrogen) using the Opti-MEM-I reduced serum media 

Figure 1. Simplified glucose metabolism with multienzyme complexes. Seven metabolic intermediates are 
involved in the pathway: S1 represents glucose, S2 is fructose-6-phosphate, S3 is fructose-1,6-bisphosphate, S4 is 
3-phosphoglycerate, S5 is phosphoenolpyruvate, S6 is pyruvate, and S7 is oxaloacetate. Four rate-limiting 
enzymes are E1 (phosphofructokinase 1, PFK), E2 (fructose-1,6-bisphosphatase, FBPase), E3 (pyruvate kinase 
M2 dimer, PKM2), and E4 (phosphoenolpyruvate carboxykinase 1, PEPCK1). Pyruvate kinase M2 catalyzes 
conversion from S5 to S6 when it becomes a tetramer ( ⁎E3 ). On the other hand, phosphofructokinase 1 is 
inactivated after post-translational glycosylation (E1

gly). PFK forms three differently sized clusters: ES, EM, and EL 
represent small-, medium- and large-sized clusters, where EM and EL are multienzyme complexes. To measure 
the direction of glucose flux, we denote three metabolic products as P1, P2, and P3, which represent metabolic 
outcomes of the pentose phosphate pathway, serine biosynthesis and the downstream of glycolysis. All the used 
parameters are summarized in Tables 1 and 2.



www.manaraa.com

www.nature.com/scientificreports/

4Scientific REPORtS |  (2018) 8:2696  | DOI:10.1038/s41598-018-20348-7

(Opti-MEM-I; Gibco, Cat# 11058). The Opti-MEM-I medium was then exchanged with the fresh antibiotic-free 
growth medium after a 5 h incubation (37 °C, 5% CO2, and 95% humidity), followed by ~18–24 h incubation in 
the CO2 incubator at 37 °C.

Fluorescence Live-cell Imaging. On the day of imaging (~18–24 h post-transfection), cells were washed with 
imaging solution (20 mM HEPES (pH 7.4), 135 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, and 5.6 mM 
glucose) for three 10 min incubations, followed by a ~1–2 h incubation at ambient temperature. All samples were 
then imaged at ambient temperature (~25 °C) with a 60× 1.45 NA objective (Nikon CFI Plan Apo TIRF) using a 
Photometrics CoolSnap EZ monochrome CCD camera on a Nikon Eclipse Ti inverted C2 confocal microscope. 
Epifluorescence imaging was carried out using the following filter set from Chroma Technology; mEGFP detec-
tion by a set of Z488/10-HC cleanup, HC TIRF Dichroic and 525/50-HC emission filter.

For cell-based high-content imaging assays, 2-deoxyglucose (25 mM) was added to Hs578T cells after washing 
three times with the imaging solution. Images showing PFKL-mEGFP clusters were acquired before and after cells 
were incubated with 2-deoxyglucose at various time points (up to 6 hours). Control experiments were also carried 
out with 167 μL of vehicle (i.e., water). To ensure reproducibility, our experiments were repeated at least five times 
over the course of a few months. Statistical analysis was performed using two-sample two-tail t-tests.

Cluster Size Analysis. Cluster size analysis was accomplished using the ImageJ processing software (National 
Institutes of Health) as we have done before4. Briefly, fluorescent wide-field images were processed through 
ImageJ using a custom script and macro that automates the counting of fluorescent clusters using its built-in 
module, so-called robust automatic threshold selection (RATS). In this analysis, the images were scaled according 
to the pixel size of the microscope (i.e., 0.12 µm/pixel) before the default parameters for RATS (i.e., noise thresh-
old = 25, λ factor = 3) were used in this analysis. Once fluorescent clusters were selected from an image, the par-
ticle analysis module was applied to attain both the number and area of fluorescent clusters within an image. This 
process was repeated for all subsequent cell images. The operator then evaluated the original cell images against 
the particle mask to eliminate data in which more than one cluster was counted as a single particle.

Results
Modeling Glucose Metabolism with Multienzyme Complexes. Glucose metabolism consists of glyc-
olysis and gluconeogenesis where three irreversible reactions are involved in glycolysis, four irreversible reactions 
in gluconeogenesis, and seven reversible reactions in both pathways. In our model, we simplify the 14-step path-
way by condensing a few reversible steps into one conversion (Fig. 1). Accordingly, we omit some of the metabolic 
intermediates such as glucose-6-phosphate, dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, 1,3-bis-
phosphoglycerate, and 2-phosphoglycerate because they are not directly shuttled to other metabolic pathways. In 
addition, three metabolic products (Pi) represent three metabolic fates of glycolytic metabolites. Importantly, we 
focus on four cytoplasmic enzymes which spatially organize into multienzyme clusters (i.e., glucosome clusters)4: 
PFKL, FBPase, PKM2, and PEPCK1. Note that the other ten enzymes are not cytoplasmic or rate-determining in 
glucose metabolism.

In addition, we incorporated cancer-relevant mechanisms of the four enzymes forming the glucosome. First, 
pyruvate kinase catalyzes conversion from phosphoenolpyruvate to pyruvate. The M2 isoform of pyruvate kinase 

Variables Chemical species Values (non-dimensional)

S1(0) Glucose 0.01

S2(0) Fructose-6-Phosphate 0.01

S3(0) Fructose-1,6-Bisphosphate 0.01

S4(0) 3-Phosphoglycerate 0.01

S5(0) Phosphoenolpyruvate 0.01

S6(0) Pyruvate 0.01

S7(0) Oxaloacetate 0.01

E1(0) Phosphofructokinase 1 99.99

E2(0) Fructose-1,6-Bisphosphatase 100

E3(0) Pyruvate Kinase M2 dimers 99.99

E4(0) Phosphoenolpyruvate Carboxykinase 1 100

ES(0) Small-sized enzyme clusters 0

EM(0) Medium-sized enzyme clusters 0

EL(0) Large-sized enzyme clusters 0
∗E (0)3 Pyruvate Kinase M2 tetramers 0.01

E (0)gly
1 Glycosylated Phosphofructokinase 0.01

P1(0) Pentose Phosphate Shunt 0.01

P2(0) Serine Biosynthesis Flux 0.01

P3(0) Glycolytic Flux 0.01

Table 1. The initial conditions used in the mathematical model for glucose metabolic pathway.
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(PKM2) is predominantly expressed in cancer cells while suppressing the expression of pyruvate kinase M1 iso-
form (PKM1)17. PKM2 plays an important role in aerobic glycolysis as a dimer by impairing pyruvate produc-
tion, thus redirecting glucose flux into serine biosynthesis18,19. However, a tetrameric form of PKM2 possesses its 
canonical glycolytic activity in production of pyruvate in cancer cells. We take into account the dimer-tetramer 
conversion as part of the regulation of glucose metabolism (Fig. 1). Second, PFK catalyzes the conversion of 
fructose-6-phosphate to fructose-1,6-bisphosphate. Particularly, liver-type PFK (PFKL) is glycosylated in sev-
eral types of cancer cells under hypoxia conditions, diverting the direction of glucose flux into the pentose 
phosphate pathway20. Our model includes the impact of glycosylation on PFKL as part of the regulation of its 
metabolic activity in glycolysis. Third, cytoplasmic PEPCK1 plays an essential role in the first step of gluconeo-
genesis21. Recently, a new role of PEPCK1 in tumor cell proliferation was discovered in certain types of cancer 
cells by controlling carbon metabolic flux through the TCA cycle22. However, a molecular level mechanism of 
PEPCK1 in cancer cells (e.g., post-translational modification-dependent activity or oligomerization-dependent 
activity) is not firmly established yet to be included in our model. Fourth, FBPase catalyzes the conversion of 
fructose-1,6-bisphosphate to fructose-6-phosphate. Since FBPase catalyzes the backward reaction of PFK, the 
activities of PFK and FBPase are reciprocally regulated by various allosteric metabolites. Similarly, an antagonistic 
role of FBPase for glycolytic flux was validated to play a role in kidney cancer progression23. However, other than 
the well-established allosteric regulation, cancer-specific alteration of FBPase is not established yet to be included 
in our model.

Unlike many previous mathematical models for glycolysis, we take into account the recent discovery of the 
glucosome being formed in various sizes in cancer cells. Briefly, various sizes of PFKL clusters in cancer cells 
are categorized into three subclasses; small, medium and large-sized cluster4. Small-sized clusters formed by 
PFKL are single-enzyme assemblies whereas medium- and large-sized clusters represent spatial organizations of 
multienzyme complexes. When cancer cells display small-sized clusters, the given cells barely include the other 

Parameters Rates Values (non-dimensional)

k0 Glucose production 10

k1, k−1 Conversion to (from) Fructose-6-Phosphate 10, 10

k2, k−2 Conversion to (from) Fructose-1,6-Bisphosphate 40, 7

k3, k−3 Conversion to (from) 3-Phophoglycerate 10, 10

k4, k−4 Conversion to (from) Phosphoenolpyruvate 14, 7

k5 Conversion to Pyruvate 1

k−5 Conversion to Oxaloacetate 10

k−6 Conversion to Phosphoenolpyruvate from Oxaloacetate 10

kas, k−as Small enzyme cluster association/disassociation 10, 10

kam, k−am Medium enzyme cluster association/disassociation 10, 10

kal, k−al Large enzyme cluster association/disassociation 10, 10

kg, k−g Phosphofructokinase glycosylation (de-glycosylation) 1, 1

kd, k−d Conversion of Pyruvate Kinase M2 from (to) tetramer to (from) dimer 1, 1

kp Pentose Phosphate Shunt 5

ks Serine Biosynthesis Shunt 5

kf Glycolytic Flux 5

δp Degradation of the Pentose Phosphate Flux 0.5

δs Degradation of Serine Biosynthesis Flux 0.5

δf Degradation of Glycolytic Flux 0.5

c2 Activation of conversion to Fructose-1,6-Bisphosphate by medium enzyme clusters 0.2

c−2 Activation of conversion from Fructose-1,6-Bisphosphate by medium enzyme clusters 10

c−6
Activation of conversion to Phosphoenolpyruvate from Oxaloacetate by medium enzyme 
clusters 10

c−d
Activation of conversion from Pyruvate Kinase M2 dimers to Pyruvate Kinase M2 tetramers 
by medium enzyme clusters 0.1

e2 Activation of conversion to Fructose-1,6-Bisphosphate by large enzyme clusters 2.5

e−2 Activation of conversion from Fructose-1,6-Bisphosphate by large enzyme clusters 0.1

e−6
Activation of conversion to Phosphoenolpyruvate from Oxaloacetate by large enzyme 
clusters 10

e−d
Activation of conversion from Pyruvate Kinase M2 dimers to Pyruvate Kinase M2 tetramers 
by large enzyme clusters 0.05

α Acceleration of Fructose-1,6-Bisphosphate on Pyruvate Kinase M2 association 1

K1 Allosteric inhibition by Fructose-1,6-Bisphosphate 1

K2 Allosteric inhibition by Fructose-6-Phosphate 1

K3 Allosteric activation by Fructose-1,6-Bisphosphate 1

Table 2. The rate constants used in the mathematical model for glucose metabolic pathway.
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sizes of clusters. However, cancer cells showing medium- and large-sized clusters contain smaller sized clusters. 
Our cluster size analysis has also revealed that HeLa cells with medium-sized clusters show ~86.1 clusters per cell 
whereas HeLa cells showing large-sized clusters exhibit ~5.6 large-sized clusters and ~25.1 medium-sized clusters 
per cell4. Accordingly, we assume that 11 medium-sized clusters might form one large cluster in the cytoplasm of 
cancer cells in our model.

Glucose Flux Analysis at Subcellular Levels. In Fig. 2, metabolic product concentrations are shown in 
different experimental conditions, which are computed by numerically solving the mathematical model given in 
Tables 3 and 4. The model results in time-dependent changes of three metabolic products: P1 represent a meta-
bolic product of the pentose phosphate shunt (green line), P2 is a metabolic product of serine biosynthesis (red 
line), and P3 indicates a metabolic product of the downstream of glycolysis (blue line). In addition, the activity 
of non-clustering PFKL or clustered PFKL into small sizes are anticipated to be similar in our model. For the 
simulation of the cases with no cluster or only small-sized PFKL clusters, we set all the parameters related to the 
formation of medium or large-sized enzyme complexes as zero (i.e., kam, k−am, kal, k−al, ci, and ei). Please, note 
that the parameters for small-sized PFKL clusters (i.e., kas and k−as) were also set to zero when we simulated  the 
case showing no cluster. Consequently, our simulation for no cluster or only small-sized PFKL clusters showed 
the high level of P3 relative to those of P1 and P2 (Fig. 2A and B), indicating that most of glucose flux flows to 
glycolysis to produce pyruvate and beyond. However, when the rate-limiting enzymes in glucose metabolism 
are spatially organized into medium-sized glucosome clusters, the enzymes in medium-sized clusters may have 
different levels of catalytic activity. Because the increased flux of the pentose phosphate shunt is correlated with 
the high level of medium-sized clusters in cancer cells4, our assumption of c2, c−d ≪ 1 and c−2, c−6 ≫ 1 resulted in 
a significant increase of P1 but decreased the concentrations of P2 and P3 (Fig. 2C). In this case, we set the values 
of kal, k−al, and ei as zero. Lastly, we considered all the rate-limiting enzymes being assembled into large-sized 

Reaction Propensity Reaction Propensity Reaction Propensity

R1 k0 R11 k−5S6 R21
∗k Ed 3

R2 k1S1 R12
k−6(E4 + c−6EM 
+ e−6EL)S7

R22
k − d (E3 + c −dEM + e −d EL) (1 + α(S3)/
(S3 + K3))

R3 k−1S2 R13 kasE1 R23 kpS2

R4 k2(E1 + ES + c2EM + e2EL)S2(K1)/(K1 + S3) R14 k−asES R24 ksS4

R5 k−2(E2 + c−2EM + e−2EL)S3(K2)/(K2 + S2) R15 kamESE2E3E4 R25 kfS6

R6 k3S3 R16 k−amEM R26 δpP1

R7 k−3S4 R17 kal(EM)11 R27 δsP2

R8 k4S4 R18 k−alEL R28 δfP3

R9 k−4S5 R19 kgE1

R10
∗k E S5 3 5 R20 −k Eg

gly
1

Table 3. Propensities of 28 reactions in the glucose metabolic pathway.

Equations

S = (S1, S2, S3, S4, S5, S6, S7)T, = ⁎E E E E E E E E E E( , , , , , , , , )S M L
gly T

1 2 3 4 3 1 , P = (P1, P2, P3)T

ν= S E( , )dS
dt S S , ν= S E( , )dE

dt E E , ν= S P( , )dP
dt P P

 =S E R R R R R R R R R R R R R R R( , ) [ , , , , , , , , , , , , , , ]S 1 2 3 4 5 6 7 8 9 10 11 12 23 24 25
T

 =S E R R R R R R R R R R( , ) [ , , , , , , , , , ]E 13 14 15 16 17 18 19 20 21 22
T

=S P R R R R R R( , ) [ , , , , , ]P 23 24 25 26 27 28
T

ν =
















−
− − −

− −
− − −

− −
− −

−
















1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

S

ν =



















− −
−
− −
−

− −
− −

−
−

−



















1 1 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 1
0 0 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 1 1 11 11 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0

E

ν =








−
−

−









1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

P

Table 4. A system of ODEs for metabolic intermediates, enzymes and their clusters, and metabolic products.
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glucosome clusters in the presence of smaller clusters. Because the promotion of large-sized clusters in cancer 
cells is correlated with the increased flux of serine biosynthesis4, our assumption of e2, e−6 ≫ 1 and e−2, e−d ≪ 1 
along with the same assumption of ci in the previous case resulted in the substantially increased level of P2 relative 
to the levels of P1 and P3 (Fig. 2D). Collectively, our mathematical model is developed to understand the cluster 
size-dependent changes of glucose flux in cancer cells.

Sensitivity Analysis. Next, we performed a sensitivity analysis by which we evaluated without bias how the 
input values of simulation parameters influence the production of specific metabolic flux (Pi). According to the 
publically available MATLAB codes developed by Kirschner and coworker16, we modified to calculate PRCCs 
in our model (Figure S1). If the PRCC values are close to −1 or +1, the corresponding parameters have strong 
correlations with the formation of the given metabolic product. On the other hand, if the correlation coefficient is 
close to 0, there is no correlation between the input parameters and the given metabolic product. When the abso-
lute values of the PRCCs are greater than ±0.2 and their p-values are less than 0.01, we defined the corresponding 
parameters as ‘sensitive’ parameters (Fig. 3) to determine which simulation parameters are critical for our model 
and how sensitive each parameter is to understand its contribution to the outcomes of glucose flux. Noticeably, 
the formation of each metabolic product was sensitive not only to the enzyme activities of the glucosome mem-
bers but also the efficiencies of enzyme clustering into the certain sizes of glucosomes.

In Fig. 4, we further analyzed a few critical parameters that influence the enzyme activities of the glucosome 
members (i.e., k2, k−2, and k−d). Each selected parameter was perturbed in one direction while all other parameter 
values were fixed as default values as shown in Table 2. The changes in the metabolic product concentrations were 
then presented under four cases; (i) no spatial organization, (ii) small-sized PFKL clusters, (iii) medium-sized 
multienzyme complexes, and (iv) large-sized multienzyme complexes. Note that for the cases dealing with the 
medium-sized or large-sized complexes, the smaller-sized clusters are also formed in the model. When k2 was 
decreased from 40 to 10 (Fig. 4A), the conversion from S2 to S3 was reduced. We thus observed significant increase 
in P1 while decrease in P2 and P3. On the other hand, when k−2 was increased from 7 to 10 (Fig. 4B), a similar 
pattern was observed as in Fig. 4A although the changes were small due to the narrow ranges of the parameter. 

Figure 2. Glucose flux analysis at subcellular levels. Time-dependent changes of metabolic product 
concentrations (P1, P2 and P3) in single cells are graphed for: (A) cells with no spatial organization, (B) cells with 
small-sized PFKL clusters which indicate single enzyme assemblies, (C) cells with medium-sized multienzyme 
complexes, and (D) cells with large-sized multienzyme complexes in the presence of smaller clusters. Arbitrary 
units (a.u.) are used to show relative concentrations or time during our model simulation. P1, P2, and P3 
represent metabolic outcomes of the pentose phosphate pathway, serine biosynthesis and the downstream of 
glycolysis, respectively.
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Finally, when k−d was increased from 1 to 10 (Fig. 4C), glucose flux moved toward the production of P3, which 
resulted in significant increase in P3 and decrease in P1 or P2. Note that we did not observe much increase of P3 in 
the cases where no spatial organization or only small-sized PFKL clusters are dominant (Fig. 4C) because the flux 
was already committed toward the production of P3 in these cases. Collectively, the simulated flux changes reflect 
the changes of enzymatic activities involved in glucosome clusters.

In Fig. 5, we also analyzed more critical parameters that influence the efficiencies of enzyme clustering into the 
glucosomes (i.e., c−2, e2, and e−d). Similarly, each selected parameter was perturbed in one direction while fixing 
the other parameter values. The changes in the metabolic product concentrations were shown under the four 
cases as well. When c−2 was decreased from 10 to 1 (Fig. 5A), the level of P1 decreased and that of P2 increased 
significantly due to the decreased contribution of the medium-sized cluster to the conversion from S3 to S2. When 
e2 was decreased from 2.5 to 1 (Fig. 5B), the resulting effect was quite opposite from the one shown Fig. 5A 
because the decreased e2 reduces the contribution of the large-sized clusters to the conversion of S2 to S3. When 
e−d was increased from 0.05 to 1 (Fig. 5C), the level of P2 decreased and that of P3 increased significantly with 

Figure 3. The partial rank correlation coefficients (PRCCs) between the ‘essential’ input parameters and the 
concentrations of metabolic products. The PRCCs at time = 10 are graphed to provide relative strengths of 
the correlations between the input parameters and the concentrations of metabolic products (P1, P2, and P3). 
The horizontal lines at ±0.2 indicate the thresholds we used to distinguish sensitive essential parameters from 
non-essential parameters. The PRCCs of all parameters are shown in supplementary figure S1. P1, P2, and P3 
represent metabolic outcomes of the pentose phosphate pathway, serine biosynthesis and the downstream of 
glycolysis, respectively.
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slight decrease in P1. This is due to the increased efficiency of the large-sized cluster on its contribution to the 
conversion of E3 to ∗E3 .

Metabolic Flux Analysis at Ensemble Levels. We have further evaluated our model by quantifying the 
changes of glucose flux in the presence of methylene blue, fructose-1,6-bisphosphate or epidermal growth fac-
tor (EGF), which are known to regulate the direction of glucose flux at ensemble levels24–29. As shown in Table 5, 
we have counted the percentages of cells showing no cluster, small, medium, and large clusters in the absence and 
presence of the listed glucose flux regulators. In combination with our subcellular flux analysis (Fig. 2), we have 
computed the time-dependent changes of metabolic products (P1, P2, and P3) at an ensemble level in the four 
published cases4. To predict the levels of metabolic products at an ensemble level, we multiplied the levels of P1, 
P2, and P3 of the four cases shown in Fig. 2 by the corresponding proportions of the cells showing differently sized 
clusters. In a control population of Hs578T cells without any exogenous stimulus (Fig. 6A), the level of P3 appears 
to be slightly greater than those of P1 and P2. However, relative to Fig. 6A, the cancer cells that were treated with 
methylene blue (Fig. 6B) or fructose-1,6-bisphosphate (Fig. 6C) increase the level of P1 while decreasing the level 

Figure 4. Simulated concentration changes of metabolic products with varying ranges of the catalytic activities 
of glucosome members. Time-dependent concentration changes of three metabolic products are expressed 
as shaded regions, when one ‘essential’ kinetic rate constant is perturbed for k2 ranging from 40 to 10 (A), 
k−2 ranging from 7 to 10 (B), and k−d from 1 to 10 (C). In each case, time-dependent concentration changes 
of three metabolic products in single cells are graphed for (i) cells with no spatial organization, (ii) cells with 
small-sized PFKL clusters, (iii) cells with medium-sized multienzyme complexes, and (iv) cells with large-sized 
multienzyme complexes.
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of P3 at an ensemble level. On the other hand, Fig. 6D shows the case where the cancer cells have been treated 
with EGF. In this case, the level of P2 increases but the level of P1 decreases relative to the other cases. It appears 
clear that the simulation is capable of showing that glucose flux shunt from glycolysis to either the pentose phos-
phate pathway or the serine biosynthesis at ensemble levels, whose trend is indeed consistent with the already 
known functions of the glucose flux regulators in populations24–29. Collectively, our mathematical model with 
high-content imaging analysis is adequate to predict metabolic consequences of glucose flux regulators in a pop-
ulation of cancer cells.

Mathematical Prediction of Metabolic Flux with 2-Deoxyglucose at Ensemble Levels. Our 
model is now applied to assess metabolic consequences of 2-deoxyglucose in Hs578T cells. 2-Deoxyglucose is a 
competitive inhibitor of phosphoglucose isomerase catalyzing step 2 in glycolysis30. However, due to the lack of 
2-hydroxyl group, 2-deoxyglucose cannot further metabolize into fructose-6-phosphate in downstream glycoly-
sis, thereby resulting in the inhibition of glycolysis. Accordingly, 2-deoxyglucose appeared to impair cell growth 

Figure 5. Simulated concentration changes of metabolic products with varying ranges of the clustering 
efficiency of glucosomes. Time-dependent concentration changes of three metabolic products are expressed as 
shaded regions, when one ‘essential’ clustering efficiency is perturbed for c−2 ranging from 10 to 1 (A), e2 from 
2.5 to 1 (B), and e−d from 0.05 to 1 (C). In each case, time-dependent concentration changes of three metabolic 
products in single cells are graphed for (i) cells with no spatial organization, (ii) cells with small-sized PFKL 
clusters, (iii) cells with medium-sized multienzyme complexes, and (iv) cells with large-sized multienzyme 
complexes.
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and thus implemented for anti-tumor therapeutics. However, its pharmacological effects on cancer treatment31–33 
remain inconclusive, consequently raising a number of questions particularly including potential metabolic alter-
ations by 2-deoxyglucose in cancer cells.

In this work, we have employed our mathematical model to predict whether 2-deoxyglucose can potentially 
alter the direction of glucose flux in cancer cells beyond glycolysis inhibition. First, we performed cell-based 
high-content imaging assays to validate the metabolic effect of 2-deoxyglucose at single cell levels (Fig. 7). Briefly, 
we expressed PFKL-mEGFP as a glucosome marker in Hs578T cells. To be consistent with Table 5, Hs578T cells 
were cultured in RPMI1640 with 10% dialyzed FBS. When we treated transfected Hs578T cells with 25 mM of 
2-deoxyglucose for 6 hours, the percentage of cells showing small-sized clusters was significantly reduced from 
58.3 % to 34.7% (Fig. 7A). Meanwhile, the percentages of cells showing medium- and large-sized clusters were 
significantly increased from 13.4% to 21.2% and from 26.7% to 44.1%, respectively (Fig. 7A), indicating the strong 
promotion of glucosome formation and thus metabolic shunts to anabolic pathways.

Subsequently, we computed an ensemble-level outcome of glucose flux in the presence 2-deoxyglucose. 
Similarly to Fig. 6, we calculated the changes of metabolic outcomes at ensemble levels based on our subcellular 

No cluster Small Medium Large Total

Hs578T (Control) 1.6% 58.3% 13.4% 26.7% 100%

Hs578T with Methylene Blue 0.5% 43.0% 25.7% 30.8% 100%

Hs578T with Fructose-1,6-Bisphosphate 0.0% 45.3% 29.1% 25.6% 100%

Hs578T with Epidermal Growth Factor 0.4% 53.1% 7.6% 38.9% 100%

Hs578T with 2-Deoxyglucose 0.0% 34.7% 21.2% 44.1% 100%

Table 5. Ratios of cell distribution showing different-sized clusters in the five environments at the population 
level.

Figure 6. Metabolic flux analysis at ensemble levels. Time-dependent concentration changes of three metabolic 
products are simulated by our mathematical model in the four scenarios: cancer cells without a glucose flux 
regulator as a control (A), cancer cells that are treated with 5 nM methylene blue (B) or 15 mM fructose-1,6-
bisphosphate (C), and cancer cells with 30 ng/ml epidermal growth factors (D). Note that human breast cancer 
cells (Hs578T) were cultured in the medium of RPMI1640 and 10% dialyzed FBS. P1, P2, and P3 represent 
metabolic outcomes of the pentose phosphate pathway, serine biosynthesis and the downstream of glycolysis, 
respectively.
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flux analysis (Fig. 2) and high-content imaging analysis (Fig. 7A, Table 5). Relative to a control flux in Hs578T 
cells where glycolytic flux reaches to ~7 arbitrary units at t = 10 (Fig. 6A), glycolytic flux was indeed inhibited 
at ~ 5 arbitrary units in the presence of 2-deoxyglucose (Fig. 7B). Importantly, our model provided that met-
abolic shunts from glycolysis to anabolic biosynthetic pathways were promoted and relatively became domi-
nant in the population of Hs578T cells. Although more experimental validation may be necessary, it is clear that 
2-deoxyglucose promoted the formation of glucosome clusters in both single-cell (Fig. 7C,D) and ensemble levels 
(Fig. 7B). Therefore, we propose that along with the inhibitory role of 2-deoxyglucose in glycolysis, its commit-
ment diverting glucose flux into anabolic pathways may explain in part cancer progression observed during its 
clinical trials31.

Discussion
We constructed a simple mathematical model to understand the cluster size-dependent functional contributions 
of metabolic enzymes and their multienzyme complexes to cancer cell metabolism. Briefly, glycolysis is inter-
connected with energy metabolism and anabolic biosynthetic pathways, including the pentose phosphate path-
way and serine biosynthesis. Three metabolic products (Pi) thus represent downstream pathways of glycolysis, 
allowing us to investigate how glucose flux changes its direction at metabolic nodes between energy metabolism 
and anabolic pathways in cancer cells. Based on our experimental data4, we developed a model to predict that 

Figure 7. The effect of 2-deoxyglucose on the distribution of Hs578T cells with various sizes of PFKL-mEGFP 
clusters. The percentage (%) of Hs578T cells displaying each size of PFKL-mEGFP cluster was analyzed in the 
presence of 2-deoxyglucose. (A) The graph shows the average percentages (%) of cells displaying the given 
sized clusters along with their standard deviations (±) in the absence (black bars) and presence (red bars) of 
2-deoxyglucose. At least five independent imaging sessions were performed and total 1200 transfected cells were 
analyzed. Statistical analyses were performed using two-sample two-tail t-tests. *p < 0.01. (B) Metabolic flux 
analysis were performed using our mathematical model with the high-content imaging data of 2-deoxyglucose. 
Relative to a control flux (Fig. 2A), glycolytic flux (P3) decreased, but the metabolic shunts of glucose to the 
pentose phosphate pathway (P1) and serine biosynthesis (P2) increased. (C and D) Representative images of 
Hs578T cells show subcellular localization of PFKL-mEGFP before and after treatment of 2-deoxyglucose (25 
mM) for 6 hours. Scale bar, 10 µm.
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medium-sized clusters of glucosomes shunt glucose flux into the pentose phosphate pathway whereas large-sized 
clusters of glucosome divert glucose flux into serine biosynthesis at subcellular levels. Importantly, our model 
supports that the changes of relative ratios of cancer cells displaying small-, medium- and large-sized clusters in a 
population appear to be significant enough to influence overall net metabolic outcomes of cancer cells at ensem-
ble levels. Moreover, our mathematical model is further evaluated to predict the effect of 2-deoxyglucose on the 
fate of glucose, thus providing new quantitative insights of how 2-deoxyglucose alters glucose flux in cancer cells. 
Collectively, we conclude that our mathematical model supports the hypothesis that glucosomes divert glucose 
flux into the pentose phosphate pathway and serine biosynthesis in a cluster size-dependent manner.

It is important to emphasize here that our mathematical model accounting for size-dependent metabolic 
functions of glucosome clusters is significantly different from other models that mostly rely on in vitro enzyme 
kinetics. Our model explains altered glycolysis in cancer cells that redirects glucose flux into the pentose phos-
phate pathway and serine biosynthesis in a cluster size-dependent manner. Importantly, we can now predict the 
direction of glucose flux in the presence of small-molecule drug candidates as long as quantitative high-content 
imaging data is obtained in single-cell levels. Additionally, we can quantify relative partition ratios of glucose flux 
between glycolysis, the pentose phosphate pathway and serine biosynthesis in various conditions. Collectively, 
our mathematical model fully integrates various cancer-associated mechanisms discovered in recent years, thus 
advancing our understanding of cancer cell metabolism in single cells.
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